Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.253
Filtrar
1.
Nat Commun ; 15(1): 1956, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438341

RESUMO

Directed evolution of computationally designed enzymes has provided new insights into the emergence of sophisticated catalytic sites in proteins. In this regard, we have recently shown that a histidine nucleophile and a flexible arginine can work in synergy to accelerate the Morita-Baylis-Hillman (MBH) reaction with unrivalled efficiency. Here, we show that replacing the catalytic histidine with a non-canonical Nδ-methylhistidine (MeHis23) nucleophile leads to a substantially altered evolutionary outcome in which the catalytic Arg124 has been abandoned. Instead, Glu26 has emerged, which mediates a rate-limiting proton transfer step to deliver an enzyme (BHMeHis1.8) that is more than an order of magnitude more active than our earlier MBHase. Interestingly, although MeHis23 to His substitution in BHMeHis1.8 reduces activity by 4-fold, the resulting His containing variant is still a potent MBH biocatalyst. However, analysis of the BHMeHis1.8 evolutionary trajectory reveals that the MeHis nucleophile was crucial in the early stages of engineering to unlock the new mechanistic pathway. This study demonstrates how even subtle perturbations to key catalytic elements of designed enzymes can lead to vastly different evolutionary outcomes, resulting in new mechanistic solutions to complex chemical transformations.


Assuntos
Arginina , Histidina , Histidina/genética , Evolução Biológica , Catálise , Engenharia , Metilistidinas
2.
Poult Sci ; 103(2): 103307, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38147727

RESUMO

This study investigated the effects of pre-slaughter fasting time on the relationship between skeletal muscle protein degradation levels at slaughter and chicken meat quality after 48 h of postmortem aging. Twenty-four broiler chicks at 0 d of age were used in this study until 28 d of age. At 27 d of age, the chickens were assigned to 4 treatment groups: 0 h of fasting (0H), 8 h of fasting (8H), 16 h of fasting (16H), or 24 h of fasting (24H). They were slaughtered at 28 d of age. Blood samples were collected before fasting and immediately before slaughter. Plasma Nτ-methylhistidine concentration, an index of skeletal muscle protein degradation level, and muscle free amino acid concentration were analyzed. Antemortem changes in individual plasma Nτ-methylhistidine concentrations were significantly increased in 8H, 16H, and 24H compared to that in 0H (P < 0.05). After 48 h of postmortem storage, the glutamic acid content in the pectoralis major muscles increased with fasting time (P < 0.05), and the umami taste of chicken soup in the fasting groups (8H, 16H, 24H) was higher than that in the 0H group (P < 0.05). The antemortem changes in plasma Nτ-methylhistidine concentrations were correlated with glutamic acid content in the pectoralis major muscles (r = 0.57, P < 0.05) and umami taste (r = 0.66, P < 0.05). These results suggest that skeletal muscle protein degradation levels at slaughter are related to postmortem chicken meat quality, especially glutamic acid content and umami taste.


Assuntos
Aminoácidos , Galinhas , Animais , Galinhas/fisiologia , Aminoácidos/metabolismo , Proteólise , Ácido Glutâmico/farmacologia , Jejum , Músculo Esquelético , Metilistidinas , Carne/análise
3.
J Biochem ; 174(3): 279-289, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37279646

RESUMO

Protein methylation is mainly observed in lysine, arginine and histidine residues. Histidine methylation occurs at one of two different nitrogen atoms of the imidazole ring, producing Nτ-methylhistidine and Nπ-methylhistidine, and it has recently attracted attention with the identification of SETD3, METTL18 and METTL9 as catalytic enzymes in mammals. Although accumulating evidence had suggested the presence of more than 100 proteins containing methylated histidine residues in cells, much less information has been known regarding histidine-methylated proteins than lysine- and arginine-methylated ones, because no method has been developed to identify substrates for histidine methylation. Here, we established a method to screen novel target proteins for histidine methylation, using biochemical protein fractionation combined with the quantification of methylhistidine by LC-MS/MS. Interestingly, the differential distribution pattern of Nτ-methylated proteins was found between the brain and skeletal muscle, and identified γ-enolase where the His-190 at the Nτ position is methylated in mouse brain. Finally, in silico structural prediction and biochemical analysis showed that the His-190 in γ-enolase is involved in the intermolecular homodimeric formation and enzymatic activity. In the present study, we provide a new methodology to find histidine-methylated proteins in vivo and suggest an insight into the importance of histidine methylation.


Assuntos
Histidina , Metilistidinas , Camundongos , Animais , Metilistidinas/análise , Histidina/metabolismo , Lisina/metabolismo , Isoenzimas , Cromatografia Líquida , Espectrometria de Massas em Tandem , Proteínas , Fosfopiruvato Hidratase , Arginina , Mamíferos
4.
Open Biol ; 13(2): 220309, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36722300

RESUMO

Diatoms represent one of the most abundant groups of microalgae in the ocean and are responsible for approximately 20% of photosynthetically fixed CO2 on Earth. Due to their complex evolutionary history and ability to adapt to different environments, diatoms are endowed with striking molecular biodiversity and unique metabolic activities. Their high growth rate and the possibility to optimize their biomass make them very promising 'biofactories' for biotechnological applications. Among bioactive compounds, diatoms can produce ovothiols, histidine-derivatives, endowed with unique antioxidant and anti-inflammatory properties, and occurring in many marine invertebrates, bacteria and pathogenic protozoa. However, the functional role of ovothiols biosynthesis in organisms remains almost unexplored. In this work, we have characterized the thiol fraction of Phaeodactylum tricornutum, providing the first evidence of the presence of ovothiol B in pennate diatoms. We have used P. tricornutum to overexpress the 5-histidylcysteine sulfoxide synthase ovoA, the gene encoding the key enzyme involved in ovothiol biosynthesis and we have discovered that OvoA localizes in the mitochondria, a finding that uncovers new concepts in cellular redox biochemistry. We have also obtained engineered biolistic clones that can produce higher amount of ovothiol B compared to wild-type cells, suggesting a new strategy for the eco-sustainable production of these molecules.


Assuntos
Diatomáceas , Diatomáceas/genética , Engenharia Genética , Metilistidinas , Evolução Biológica
5.
Amino Acids ; 55(10): 1285-1291, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36477889

RESUMO

Endurance exercise alters amino acid (AA) metabolism that necessitates greater AA intake in the post exercise recovery period to support recovery. Thus, daily AA ingestion during a period of endurance training may affect the metabolically active plasma free AA pool, which is otherwise maintained during periods of inadequate protein intake by the breakdown of skeletal muscle proteins. Nine endurance-trained males completed a 4-day running protocol (20 km, 5 km, 10 km and 20 km on days 1-4, respectively) on three occasions with a controlled diet providing different protein intakes [0.94(LOW), 1.20(MOD) or 1.83gprotein kgbody mass-1 day-1 (HIGH)]. Urine collected over 24 h on day-4 and plasma collected after an overnight fast on day-5 were analyzed for free AA (plasma) and 3-methylhistidine (3MH; plasma and urine), a marker of myofibrillar protein breakdown. There was an effect of protein intake (HIGH > MOD/LOW; P < 0.05) on fasted plasma essential AA, branched chain AA and 3MH but no effect on 24-h urinary 3-MH excretion. Consuming a previously determined optimal daily protein intake of 1.83 g kg-1 day-1 during endurance training maintains fasted plasma free AA and may attenuate myofibrillar protein catabolism, although this latter effect was not detected in 24-h urinary excretion. The maintenance of the metabolically active free plasma AA pool may support greater recovery from exercise and contribute to the previously determined greater whole-body net protein balance in this athletic population. TRN: NCT02801344 (June 15, 2016).


Assuntos
Aminoácidos Essenciais , Treino Aeróbico , Masculino , Humanos , Proteínas na Dieta/metabolismo , Metilistidinas/urina , Resistência Física/fisiologia
6.
Molecules ; 27(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36234884

RESUMO

Until now, the intermediate responsible for the acyl transfer of a highly enantioselective tetrapeptide organocatalyst for the kinetic resolution of trans-cycloalkane-1,2-diols has never been directly observed. It was proposed computationally that a π-methylhistidine moiety is acylated as an intermediate step in the catalytic cycle. In this study we set out to investigate whether we can detect and characterize this key intermediate using NMR-spectroscopy and mass spectrometry. Different mass spectrometric experiments using a nano-ElectroSpray Ionization (ESI) source and tandem MS-techniques allowed the identification of tetrapeptide acylium ions using different acylation reagents. The complexes of trans-cyclohexane-1,2-diols with the tetrapeptide were also detected. Additionally, we were able to detect acylated tetrapeptides in solution using NMR-spectroscopy and monitor the acetylation reaction of a trans-cyclohexane-1,2-diol. These findings are important steps towards the understanding of this highly enantioselective organocatalyst.


Assuntos
Cicloparafinas , Metilistidinas , Acilação , Álcoois , Catálise , Cicloexanos , Peptídeos , Espectrometria de Massas por Ionização por Electrospray/métodos , Estereoisomerismo
7.
J Food Biochem ; 46(9): e14296, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35791516

RESUMO

Myocardial infarction (MI) is one of the most prevalent disorders seen in clinical practice, and its prevalence has risen dramatically in the last decade. Ovothiol-A is a natural product isolated from sea urchin eggs and display unusual antioxidant properties. The present study investigates the therapeutic effect of Ovothiol-A against MI stimulated in rats by epinephrine injection. Subcutaneous injection of 2 mg/kg epinephrine for 2 days caused MI in rats. The rats divided into three groups; control, MI, and MI treated with Ovothiol-A (500 mg/kg, orally) for 7 days. The treatment with Ovothiol-A restored ST-segment near normal, ameliorated the changes in cardiac troponin T, creatine kinase, lactate dehydrogenase, aspartate aminotransferase, alanine amino transferase, alkaline phosphatase, total proteins, creatinine, uric acid, urea, malondialdehyde, nitric oxide, reduced glutathione, catalase, glutathione-S-transferase, hemoglobin, RBCs, WBCs, platelet/lymphocyte ratio, and neutrophil/lymphocyte ratio. The histological investigation revealed that Ovothiol-A-treated group showed marked improvement in the examined cardiac muscles, liver and kidney in numerous sections. Ovothiol-A possessed a therapeutic effect against epinephrine-induced myocardial infarction. Ovothiol-A improves cardiac, liver, and kidney biomarkers and restores the typical pattern of EEG. PRACTICAL APPLICATIONS: Eggs of sea urchins are rich in potent antioxidant molecule (Ovothiol-A). The current study reveals the ability to use Ovothiol-A in the treatment of myocardial infarction.


Assuntos
Antioxidantes , Infarto do Miocárdio , Animais , Antioxidantes/metabolismo , Aspartato Aminotransferases , Epinefrina/efeitos adversos , Metilistidinas , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/tratamento farmacológico , Ratos
8.
ACS Chem Biol ; 17(7): 1989-1995, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35758414

RESUMO

The first three enzymatic steps by which organisms degrade histidine are universally conserved. A histidine ammonia-lyase (EC 4.3.1.3) catalyzes 1,2-elimination of the α-amino group from l-histidine; a urocanate hydratase (EC 4.2.1.49) converts urocanate to 4-imidazolone-5-propionate, and this intermediate is hydrolyzed to N-formimino-l-glutamate by an imidazolonepropionase (EC 3.5.2.7). Surprisingly, despite broad distribution in many species from all kingdoms of life, this pathway has rarely served as a template for the evolution of other metabolic processes. The only other known pathway with a similar logic is that of ergothioneine degradation. In this report, we describe a new addition to this exclusive collection. We show that the firmicute Bacillus terra and other soil-dwelling bacteria contain enzymes for the degradation of Nτ-methylhistidine to l-glutamate and N-methylformamide. Our results indicate that in some environments, Nτ-methylhistidine can accumulate to concentrations that make its efficient degradation a competitive skill. In addition, this process describes the first biogenic source of N-methylformamide.


Assuntos
Metilistidinas , Urocanato Hidratase , Bactérias/metabolismo , Glutamatos , Histidina/metabolismo , Histidina Amônia-Liase/metabolismo , Urocanato Hidratase/metabolismo
9.
Molecules ; 27(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35566030

RESUMO

The history, chemistry, biology, and biosynthesis of the globally occurring histidine-derived alkaloids ergothioneine (10), ovothiol A (11), and selenoneine (12) are reviewed comparatively and their significance to human well-being is discussed.


Assuntos
Alcaloides , Ergotioneína , Histidina/análogos & derivados , Humanos , Metilistidinas , Compostos Organosselênicos
10.
Mar Drugs ; 20(4)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35447941

RESUMO

Ovothiols are histidine-derived thiols produced by a variety of marine invertebrates, protists and bacteria. These compounds, which are among the strongest natural antioxidants, are involved in controlling the cellular redox balance due to their redox exchange with glutathione. Although ovothiols were initially reported as protective agents against environmental stressors, new evidence suggests that they can also act as pheromones and participate in fundamental biological processes such as embryogenesis. To get further insight into the biological roles of ovothiols, we compared ovothiol biosynthesis in the sea urchin Paracentrotus lividus and in the mussel Mytilus galloprovincialis, the two species that represent the richest sources of these compounds among marine invertebrates. Ovothiol content was measured in different tissues and in the immune cells from both species and the expression levels of ovoA, the gene responsible for ovothiol biosynthesis, was inferred from publicly available transcriptomes. A comparative analysis of ovothiol biosynthesis in the two species allowed the identification of the tissues and cells synthesizing the metabolite and highlighted analogies and differences between sea urchins and mussels. By improving our knowledge on the biological roles of ovothiols and pointing out the existence of sustainable natural sources for their isolation, this study provides the basis for future biotechnological investigations on these valuable compounds.


Assuntos
Metilistidinas , Paracentrotus , Animais , Organismos Aquáticos/metabolismo , Expressão Gênica , Paracentrotus/genética , Paracentrotus/metabolismo , Ouriços-do-Mar/genética , Ouriços-do-Mar/metabolismo
11.
Nephrol Dial Transplant ; 37(10): 1951-1961, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-35234930

RESUMO

BACKGROUND: Chronic kidney disease is an important contributor to morbidity and mortality. 3-methylhistidine (3-MH) is the by-product of actin and myosin degradation reflecting skeletal muscle turnover. Markedly elevated 3-MH levels have been documented in uraemic patients, but the interpretation of high 3-MH concentration in maintenance haemodialysis (MHD) patients remains unclear. Indeed, it is not known whether elevated serum 3-MH levels are a marker of excessive muscle catabolism or a better lean tissue mass. Here, we evaluated the association between serum 3-MH levels and clinical outcomes in these patients. METHODS: Serum 3-MH concentration was measured by reverse-phase liquid chromatography/tandem mass spectrometry in a cohort of MHD patients. We analysed the relationships between various clinical/laboratory indices, lean tissue mass measured by bioimpedance spectroscopy, mortality and cardiovascular (CV) events. RESULTS: Serum 3-MH concentration was positively correlated with serum albumin, normalized protein catabolic rate (nPCR), simplified creatinine index (SCI) and lean tissue mass. Of 291 MHD patients, during a mean follow-up of 847 days, 91 patients died and 101 patients experienced a CV event. Survival was significantly better in patients with high 3-MH concentrations (P = .002). A higher level of 3-MH was also associated with a lower CV mortality and lower incidence of CV events (P = .015 and P < .001, respectively). Low serum 3-MH levels remained significantly associated with CV events but not with mortality after adjustment for demographic, metabolic and CV risk factors. CONCLUSION: Elevated serum 3-MH concentration appears to be a marker of better lean tissue mass and nutritional status. Low serum 3-MH is a robust and independent predictor of CV events in the MHD population.


Assuntos
Actinas , Falência Renal Crônica , Metilistidinas , Diálise Renal , Actinas/metabolismo , Biomarcadores/análise , Biomarcadores/metabolismo , Creatinina , Humanos , Falência Renal Crônica/sangue , Falência Renal Crônica/metabolismo , Falência Renal Crônica/terapia , Metilistidinas/sangue , Metilistidinas/metabolismo , Albumina Sérica/análise , Albumina Sérica/metabolismo
12.
Open Biol ; 12(1): 210262, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35042403

RESUMO

Ovothiols are π-methyl-5-thiohistidines produced in great amounts in sea urchin eggs, where they can act as protective agents against the oxidative burst at fertilization and environmental stressors during development. Here we examined the biological relevance of ovothiol during the embryogenesis of the sea urchin Paracentrotus lividus by assessing the localization of the key biosynthetic enzyme OvoA, both at transcript and protein level, and perturbing its protein translation by morpholino antisense oligonucleotide-mediated knockdown experiments. In addition, we explored the possible involvement of ovothiol in the inflammatory response by assessing ovoA gene expression and protein localization following exposure to bacterial lipopolysaccharide. The results of the present study suggest that ovothiol may be a key regulator of cell proliferation in early developing embryos. Moreover, the localization of OvoA in key larval cells and tissues, in control and inflammatory conditions, suggests that ovothiol may ensure larval skeleton formation and mediate inflammatory processes triggered by bacterial infection. This work significantly contributes to the understanding of the biological function of ovothiols in marine organisms, and may provide new inspiration for the identification of the biological activities of ovothiols in humans, considering the pharmacological potential of these molecules.


Assuntos
Paracentrotus , Animais , Embrião não Mamífero , Humanos , Larva , Metilistidinas/metabolismo , Paracentrotus/metabolismo
13.
Int J Sports Med ; 43(2): 161-167, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34265861

RESUMO

The aim of this study was to analyze climbing performance across two editions of a professional multistage race, and assess the influence of climb category, prior workload, and intensity measures on climbing performance in U23 and professional cyclists. Nine U23 cyclists (age 20.8±0.9 years) and 8 professional cyclists (28.1±3.2 years) participated in this study. Data were divided into four types: overall race performance, climb category, climbing performance metrics (power output, ascent velocity, speed), and workload and intensity measures. Differences in performance metrics and workload and intensity measures between groups were investigated. Power output, ascent velocity, speed were higher in professionals than U23 cyclists for Cat 1 and Cat 2 (p≤0.001-0.016). Workload and intensity measures (Worktotal, Worktotal∙km-1, Elevationgain, eTRIMP and eTRIMP∙km-1) were higher in U23 compared to professionals (p=0.002-0.014). Climbing performance metrics were significantly predicted by prior workload and intensity measures for Cat 1 and 2 (R2=0.27-0.89, p≤0.001-0.030) but not Cat 3. These findings reveal that climbing performance in professional road cycling is influenced by climb categorization as well as prior workload and intensity measures. Combined, these findings suggest that Cat 1 and 2 climbing performance could be predicted from workload and intensity measures.


Assuntos
Ciclismo , Metilistidinas , Humanos
14.
J Biol Chem ; 297(5): 101230, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34562450

RESUMO

Protein methylation is one of the most common post-translational modifications observed in basic amino acid residues, including lysine, arginine, and histidine. Histidine methylation occurs on the distal or proximal nitrogen atom of its imidazole ring, producing two isomers: Nτ-methylhistidine or Nπ-methylhistidine. However, the biological significance of protein histidine methylation remains largely unclear owing in part to the very limited knowledge about its contributing enzymes. Here, we identified mammalian seven-ß-strand methyltransferase METTL9 as a histidine Nπ-methyltransferase by siRNA screening coupled with methylhistidine analysis using LC-tandem MS. We demonstrated that METTL9 catalyzes Nπ-methylhistidine formation in the proinflammatory protein S100A9, but not that of myosin light chain kinase MYLK2, in vivo and in vitro. METTL9 does not affect the heterodimer formation of S100A9 and S100A8, although Nπ-methylation of S100A9 at His-107 overlaps with a zinc-binding site, attenuating its affinity for zinc. Given that S100A9 exerts an antimicrobial activity, probably by chelation of zinc essential for the growth of bacteria and fungi, METTL9-mediated S100A9 methylation might be involved in the innate immune response to bacterial and fungal infection. Thus, our findings suggest a functional consequence for protein histidine Nπ-methylation and may add a new layer of complexity to the regulatory mechanisms of post-translational methylation.


Assuntos
Calgranulina B , Metiltransferases , Processamento de Proteína Pós-Traducional , RNA Interferente Pequeno , Animais , Calgranulina B/genética , Calgranulina B/metabolismo , Células HEK293 , Células HeLa , Humanos , Inflamação/genética , Inflamação/metabolismo , Metilação , Metilistidinas/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
15.
Nutrients ; 13(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34371902

RESUMO

There is ongoing debate as to whether or not α-hydroxyisocaproic acid (HICA) positively regulates skeletal muscle protein synthesis resulting in the gain or maintenance of skeletal muscle. We investigated the effects of HICA on mouse C2C12 myotubes under normal conditions and during cachexia induced by co-exposure to TNFα and IFNγ. The phosphorylation of AMPK or ERK1/2 was significantly altered 30 min after HICA treatment under normal conditions. The basal protein synthesis rates measured by a deuterium-labeling method were significantly lowered by the HICA treatment under normal and cachexic conditions. Conversely, myotube atrophy induced by TNFα/IFNγ co-exposure was significantly improved by the HICA pretreatment, and this improvement was accompanied by the inhibition of iNOS expression and IL-6 production. Moreover, HICA also suppressed the TNFα/IFNγ co-exposure-induced secretion of 3-methylhistidine. These results demonstrated that HICA decreases basal protein synthesis under normal or cachexic conditions; however, HICA might attenuate skeletal muscle atrophy via maintaining a low level of protein degradation under cachexic conditions.


Assuntos
Caquexia/tratamento farmacológico , Caproatos/farmacologia , Interferon gama/toxicidade , Interleucina-6/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Atrofia Muscular/tratamento farmacológico , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Necrose Tumoral alfa/toxicidade , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Caquexia/induzido quimicamente , Caquexia/metabolismo , Caquexia/patologia , Linhagem Celular , Regulação para Baixo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Metilistidinas/metabolismo , Camundongos , Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/patologia , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Fosforilação , Biossíntese de Proteínas , Proteólise
16.
Genome Biol Evol ; 13(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34272861

RESUMO

Ovothiols are sulfur-containing amino acids synthesized by marine invertebrates, protozoans, and bacteria. They act as pleiotropic molecules in signaling and protection against oxidative stress. The discovery of ovothiol biosynthetic enzymes, sulfoxide synthase OvoA and ß-lyase OvoB, paves the way for a systematic investigation of ovothiol distribution and molecular diversification in nature. In this work, we conducted genomic and metagenomics data mining to investigate the distribution and diversification of ovothiol biosynthetic enzymes in Bacteria. We identified the bacteria endowed with this secondary metabolic pathway, described their taxonomy, habitat and biotic interactions in order to provide insight into their adaptation to specific environments. We report that OvoA and OvoB are mostly encountered in marine aerobic Proteobacteria, some of them establishing symbiotic or parasitic relationships with other organisms. We identified a horizontal gene transfer event of OvoB from Bacteroidetes living in symbiosis with Hydrozoa. Our search within the Ocean Gene Atlas revealed the occurrence of ovothiol biosynthetic genes in Proteobacteria living in a wide range of pelagic and highly oxygenated environments. Finally, we tracked the evolutionary history of ovothiol biosynthesis from marine bacteria to unicellular eukaryotes and metazoans. Our analysis provides new conceptual elements to unravel the evolutionary and ecological significance of ovothiol biosynthesis.


Assuntos
Bactérias , Metilistidinas , Organismos Aquáticos , Bactérias/genética , Bactérias/metabolismo , Evolução Molecular , Transferência Genética Horizontal , Metilistidinas/química , Metilistidinas/metabolismo
17.
J Trauma Acute Care Surg ; 91(2S Suppl 2): S176-S181, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34117171

RESUMO

BACKGROUND: Severe burn injury results in profound catabolic deterioration. Although burn-related catabolism has been well stated, it is unclear when the catabolic response begins. This study characterized acute changes of muscle protein breakdown at the admission and the day after in severely burned adults. METHODS: Twelve patients (43 ± 19 years old) with 40% ± 21% total body surface area burns were prospectively enrolled into an observational study approved by institutional review board. Urinary samples were collected on admission day and the day after (day 1). Patient demographic and clinical data of vital signs, blood gas and chemistry, and coagulation status were collected. Catabolic changes of muscle breakdown were quantified by urinary excretion of 3-methylhisitidine, determined by gas chromatography and mass spectrometry analysis. RESULTS: Compared with admission day, burned patients had elevated mean ± SD arterial pressure (from 90 ± 5 mm Hg to 108 ± 7 mm Hg) and heart rate (from 102 ± 7 beats per minute to 119 ± 4 beats per minute both p < 0.05) after 24 hours. Their 24-hour urinary output was 1,586 ± 813 mL at admission day to 1,911 ± 1,048 mL on day 1. The 24-hour urea excretion was elevated from 172 ± 101 mg/kg per day at admission day to 302 ± 183 mg/kg per day on day 1 (both p < 0.05), with no change in creatinine excretion. Urinary 3-methylhisitidine excretion increased from 0.75 ± 0.74 mg/kg per day at admission to 1.14 ± 0.86 mg/kg per day on day 1 (p < 0.05). The estimated skeletal muscle protein breakdown was increased from 1.1 ± 1.0 g/kg per day at admission day to 1.6 ± 1.2 g/kg per day on day 1 (p < 0.05). There were no changes in prothrombin time, activated partial thromboplastin time, or platelets. CONCLUSION: In severely burned patients, catabolic muscle protein breakdown is elevated within 24 hours after admission and before changes in coagulation. These findings suggest that early interventions may be needed to effectively attenuate the catabolic responses in burn patients. LEVEL OF EVIDENCE: Prospective and observational study, level II.


Assuntos
Queimaduras/complicações , Músculo Esquelético/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Glicemia/análise , Proteínas Sanguíneas/análise , Queimaduras/patologia , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Hemodinâmica , Humanos , Masculino , Metabolismo , Metilistidinas/urina , Pessoa de Meia-Idade , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Estudos Prospectivos , Fatores de Tempo , Equilíbrio Hidroeletrolítico , Adulto Jovem
18.
Am J Clin Nutr ; 114(4): 1505-1517, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34091671

RESUMO

BACKGROUND: It is unknown whether meat intake is beneficial for long-term patient and graft survival in kidney transplant recipients (KTR). OBJECTIVES: We first investigated the association of the previously described meat intake biomarkers 1-methylhistidine and 3-methylhistidine with intake of white and red meat as estimated from a validated food frequency questionnaire (FFQ). Second, we investigated the association of the meat intake biomarkers with long-term outcomes in KTR. METHODS: We measured 24-h urinary excretion of 1-methylhistidine and 3-methylhistidine by validated assays in a cohort of 678 clinically stable KTR. Cross-sectional associations were assessed by linear regression. We used Cox regression analyses to prospectively study associations of log2-transformed biomarkers with mortality and graft failure. RESULTS: Urinary 1-methylhistidine and 3-methylhistidine excretion values were median: 282; interquartile range (IQR): 132-598 µmol/24 h and median: 231; IQR: 175-306 µmol/24 h, respectively. Urinary 1-methylhistidine was associated with white meat intake [standardized ß (st ß): 0.20; 95% CI: 0.12, 0.28; P < 0.001], whereas urinary 3-methylhistidine was associated with red meat intake (st ß: 0.30; 95% CI: 0.23, 0.38; P < 0.001). During median follow-up for 5.4 (IQR: 4.9-6.1) y, 145 (21%) died and 83 (12%) developed graft failure. Urinary 3-methylhistidine was inversely associated with mortality independently of potential confounders (HR per doubling: 0.55; 95% CI: 0.42, 0.72; P < 0.001). Both urinary 1-methylhistidine and urinary 3-methylhistidine were inversely associated with graft failure independent of potential confounders (HR per doubling: 0.84; 95% CI: 0.73, 0.96; P = 0.01; and 0.59; 95% CI: 0.41, 0.85; P = 0.004, respectively). CONCLUSIONS: High urinary 3-methylhistidine, reflecting higher red meat intake, is independently associated with lower risk of mortality. High urinary concentrations of both 1- and 3-methylhistidine, of which the former reflects higher white meat intake, are independently associated with lower risk of graft failure in KTR. Future intervention studies are warranted to study the effect of high meat intake on mortality and graft failure in KTR, using these biomarkers.


Assuntos
Dieta/efeitos adversos , Rejeição de Enxerto/etiologia , Transplante de Rim , Aves Domésticas , Carne Vermelha , Animais , Biomarcadores/urina , Feminino , Rejeição de Enxerto/urina , Humanos , Masculino , Metilistidinas/urina , Pessoa de Meia-Idade , Fatores de Risco , Transplantados
19.
FASEB J ; 35(4): e21444, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33749901

RESUMO

Skeletal muscle is the largest organ of the body, the development of skeletal muscle is very important for the health of the animal body. Prolyl hydroxylases (PHDs) are the classical regulator of the hypoxia inducible factor (HIF) signal pathway, many researchers found that PHDs are involved in the muscle fiber type transformation, muscle regeneration, and myocyte differentiation. However, whether PHDs can impact the protein turnover of skeletal muscle is poorly understood. In this study, we constructed denervated muscle atrophy mouse model and found PHD3 was highly expressed in the atrophic muscles and there was a significant correlation between the expression level of PHD3 and skeletal muscle weight which was distinct from PHD1 and PHD2. Then, the similar results were getting from the different weight muscles of normal mice. To further verify the relationship between PHD3 and skeletal muscle protein turnover, we established a PHD3 interference model by injecting PHD3 sgRNA virus into tibialis anterior muscle (TA) muscle of MCK-Cre-cas9 mice and transfecting PHD3 shRNA lentivirus into primary satellite cells. It was found that the Knock-out of PHD3 in vivo led to a significant increase in muscle weight and muscle fiber area (P < .05). Besides, the activity of protein synthesis signal pathway increased significantly, while the protein degradation pathway was inhibited evidently (P < .05). In vitro, the results of 5-ethynyl-2'-deoxyuridine (EdU) and tetramethylrhodamine ethyl ester (TMRE) fluorescence detection showed that PHD3 interference could lead to a decrease in cell proliferation and an increase of cell apoptosis. After the differentiation of satellite cells, the production of puromycin in the interference group was higher than that in the control group, and the content of 3-methylhistidine in the interference group was lower than that in the control group (P < .05) which is consistent with the change of protein turnover signal pathway in the cell. Mechanistically, there is an interaction between PHD3, NF-κB, and IKBα which was detected by immunoprecipitation. With the interfering of PHD3, the expression of the inflammatory signal pathway also significantly decreased (P < .05). These results suggest that PHD3 may affect protein turnover in muscle tissue by mediating inflammatory signal pathway. Finally, we knocked out PHD3 in denervated muscle atrophy mice and LPS-induced myotubes atrophy model. Then, we found that the decrease of PHD3 protein level could alleviate the muscle weight and muscle fiber reduction induced by denervation in mice. Meanwhile, the protein level of the inflammatory signal pathway and the content of 3-methylhistidine in denervated atrophic muscle were also significantly reduced (P < .05). In vitro, PHD3 knock-out could alleviate the decrease of myotube diameter induced by LPS, and the expression of protein synthesis pathway was also significantly increased (P < .05). On the contrary, the expression level of protein degradation and inflammatory signal pathway was significantly decreased (P < .05). Through these series of studies, we found that the increased expression of PHD3 in denervated muscle might be an important regulator in inducing muscle atrophy, and this process is likely to be mediated by the inflammatory NF-κB signal pathway.


Assuntos
Denervação , Músculo Esquelético/inervação , Atrofia Muscular/metabolismo , NF-kappa B/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Animais , Regulação da Expressão Gênica , Hipertrofia , Inflamação/genética , Inflamação/metabolismo , Metilistidinas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/patologia , NF-kappa B/genética , Pró-Colágeno-Prolina Dioxigenase/genética , Puromicina , Células Satélites de Músculo Esquelético/fisiologia , Transdução de Sinais
20.
Int J Sports Physiol Perform ; 16(8): 1089­1095, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33789246

RESUMO

PURPOSE: The aim of this study was to compare the power profile, internal and external workloads, and racing performance between U23 and professional cyclists and between varying rider types across 2 editions of a professional multistage race. METHODS: Nine U23 cyclists from a Union Cycliste Internationale "Continental Team" (age 20.8 [0.9] y; body mass 71.2 [6.3] kg) and 8 professional cyclists (28.1 [3.2] y; 63.0 [4.6] kg) participated in this study. Rider types were defined as all-rounders, general classification (GC) riders, and domestiques. Data were collected during 2 editions of a 5-day professional multistage race and split into the following 4 categories: power profile, external and internal workloads, and race performance. RESULTS: The professional group, including domestiques and GC riders, recorded higher relative power profile values after certain amounts of total work (1000-3000 kJ) than the U23 group or all-rounders (P ≤ .001-.049). No significant differences were found for external workload measures between U23 and professional cyclists, nor among rider types. Internal workloads were higher in U23 cyclists and all-rounders (P ≤ .001-.043) compared with professionals, domestiques, and GC riders, respectively. The power profile significantly predicted percentage general classification and Union Cycliste Internationale points (R2 = .90-.99), whereas external and internal workloads did not. CONCLUSION: These findings reveal that the power profile represents a practical tool to discriminate between professionals and U23 cyclists as well as rider types. The power profile after 1000 to 3000 kJ of total work could be used by practitioners to evaluate the readiness of U23 cyclists to move into the professional ranks, as well as differentiate between rider types.


Assuntos
Metilistidinas , Carga de Trabalho , Adulto , Humanos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...